Stochastic Lagrange-Poincaré Reduction

Archishman Saha

Ph.D. student, University of Ottawa

Supervisors: Prof. Tanya Schmah (University of Ottawa) and Prof. Cristina Stoica (Wilfrid Laurier University, University of Ottawa)

Stochastics and Geometry, 2024

September 9, 2024

Outline

- 1 Deterministic Lagrange-Poincaré Reduction
- Stochastic Hamilton-Pontryagin Principle
- 3 Stochastic Lagrange-Poincaré Reduction
- 4 A Stochastic Modification of the Kaluza-Klein Approach to Charged Particles

Outline

- 1 Deterministic Lagrange-Poincaré Reduction
- Stochastic Hamilton-Pontryagin Principle
- 3 Stochastic Lagrange-Poincaré Reduction
- A Stochastic Modification of the Kaluza-Klein Approach to Charged Particles

Let G be a Lie group and $L \in C^{\infty}(TG)$ be a G-invariant Lagrangian under the tangent lifted left action of G on TG. Given a curve g(t) in G, set $\xi(t) = g(t)^{-1}\dot{g}(t)$. The following are equivalent:

- The variational principle $\delta \int_0^T L(g(t), \dot{g}(t)) dt = 0$ holds for variations with fixed endpoints.
- g(t) satisfies the Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{g}}\right) = \frac{\partial L}{\partial g}.$$

Let G be a Lie group and $L \in C^{\infty}(TG)$ be a G-invariant Lagrangian under the tangent lifted left action of G on TG. Given a curve g(t) in G, set $\xi(t) = g(t)^{-1}\dot{g}(t)$. The following are equivalent:

- The variational principle $\delta \int_0^T L(g(t), \dot{g}(t)) dt = 0$ holds for variations with fixed endpoints.
- g(t) satisfies the Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{g}}\right) = \frac{\partial L}{\partial g}.$$

• Let ℓ denote the restriction of L to \mathfrak{g} . The curve $\xi(t)$ in \mathfrak{g} satisfies the variational principle $\delta \int_0^T \ell(\xi(t))dt = 0$

Let G be a Lie group and $L \in C^{\infty}(TG)$ be a G-invariant Lagrangian under the tangent lifted left action of G on TG. Given a curve g(t) in G, set $\xi(t) = g(t)^{-1}\dot{g}(t)$. The following are equivalent:

- The variational principle $\delta \int_0^T L(g(t), \dot{g}(t)) dt = 0$ holds for variations with fixed endpoints.
- g(t) satisfies the Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{g}}\right) = \frac{\partial L}{\partial g}.$$

• Let ℓ denote the restriction of L to \mathfrak{g} . The curve $\xi(t)$ in \mathfrak{g} satisfies the variational principle $\delta \int_0^T \ell(\xi(t))dt = 0$ for variations of the form

$$\delta \xi = \dot{\eta} + [\xi, \eta],$$

where η is an arbitrary curve in $\mathfrak g$ vanishing at the endpoints.

Let G be a Lie group and $L \in C^{\infty}(TG)$ be a G-invariant Lagrangian under the tangent lifted left action of G on TG. Given a curve g(t) in G, set $\xi(t) = g(t)^{-1}\dot{g}(t)$. The following are equivalent:

- The variational principle $\delta \int_0^T L(g(t), \dot{g}(t)) dt = 0$ holds for variations with fixed endpoints.
- g(t) satisfies the Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{g}}\right) = \frac{\partial L}{\partial g}.$$

• Let ℓ denote the restriction of L to \mathfrak{g} . The curve $\xi(t)$ in \mathfrak{g} satisfies the variational principle $\delta \int_0^T \ell(\xi(t))dt = 0$ for variations of the form

$$\delta \xi = \dot{\eta} + [\xi, \eta],$$

where η is an arbitrary curve in ${\mathfrak g}$ vanishing at the endpoints.

The Euler-Poincaré equations

$$\frac{d}{dt}\left(\frac{\delta\ell}{\delta\xi}\right) = \mathsf{ad}_{\xi}^* \frac{\delta\ell}{\delta\xi}$$

are satisfied by $\xi(t)$.

Generalization to Arbitrary Configuration Manifolds: Lagrange-Poincaré Reduction

 Let G be a Lie group acting freely and properly on a manifold Q (on the left) and via tangent lifts on TQ and L be a G-invariant Lagrangian on TQ.

Generalization to Arbitrary Configuration Manifolds: Lagrange-Poincaré Reduction

- Let G be a Lie group acting freely and properly on a manifold Q (on the left) and via tangent lifts on TQ and L be a G-invariant Lagrangian on TQ.
- We want to reduce the action principle and its associated Euler-Lagrange equations to the dimensionally smaller space TQ/G.

Generalization to Arbitrary Configuration Manifolds: Lagrange-Poincaré Reduction

- Let G be a Lie group acting freely and properly on a manifold Q (on the left) and via tangent lifts on TQ and L be a G-invariant Lagrangian on TQ.
- We want to reduce the action principle and its associated Euler-Lagrange equations to the dimensionally smaller space TQ/G.
- Given a choice of a principal connection on the bundle $Q \to Q/G$, Cendra, Marsden and Ratiu (2001), showed that

 An equivalent formulation of Euler-Lagrange equations is through the Hamilton-Pontryagin (H-P) principle. This is useful for dealing with mechanical systems perturbed by stochastic noise.

- An equivalent formulation of Euler-Lagrange equations is through the Hamilton-Pontryagin (H-P) principle. This is useful for dealing with mechanical systems perturbed by stochastic noise.
- We look for critical points of the action functional

$$\mathcal{A}(q(t), v(t), p(t)) = \int_0^T (L(q(t), v(t)) + \langle p(t), \dot{q}(t) - v(t) \rangle) dt$$

over curves (q(t), v(t), p(t)) in the **Pontryagin bundle** $TQ \oplus T^*Q$ with $q(0) = a \in Q$ and $q(T) = b \in Q$.

- An equivalent formulation of Euler-Lagrange equations is through the Hamilton-Pontryagin (H-P) principle. This is useful for dealing with mechanical systems perturbed by stochastic noise.
- We look for critical points of the action functional

$$\mathcal{A}(q(t), v(t), p(t)) = \int_0^T (L(q(t), v(t)) + \langle p(t), \dot{q}(t) - v(t) \rangle) dt$$

over curves (q(t), v(t), p(t)) in the **Pontryagin bundle** $TQ \oplus T^*Q$ with $q(0) = a \in Q$ and $q(T) = b \in Q$.

• This is equivalent to solving the **implicit Euler-Lagrange equations**:

$$\begin{split} \dot{q} &= v \\ p &= \frac{\partial L}{\partial v} \quad \text{(This is the Legendre transform)} \\ \dot{p} &= \frac{\partial L}{\partial q}. \end{split}$$

- An equivalent formulation of Euler-Lagrange equations is through the Hamilton-Pontryagin (H-P) principle. This is useful for dealing with mechanical systems perturbed by stochastic noise.
- We look for critical points of the action functional

$$\mathcal{A}(q(t), v(t), p(t)) = \int_0^{\mathcal{T}} (L(q(t), v(t)) + \langle p(t), \dot{q}(t) - v(t) \rangle) dt$$

over curves (q(t), v(t), p(t)) in the **Pontryagin bundle** $TQ \oplus T^*Q$ with $q(0) = a \in Q$ and $q(T) = b \in Q$.

This is equivalent to solving the implicit Euler-Lagrange equations:

$$\begin{split} \dot{q} &= v \\ p &= \frac{\partial L}{\partial v} \quad \text{(This is the Legendre transform)} \\ \dot{p} &= \frac{\partial L}{\partial a}. \end{split}$$

 The H-P principle is used for developing variational principles for systems with Dirac constraints.

 We will approach Lagrangian reduction from the Hamilton-Pontryagin viewpoint.

- We will approach Lagrangian reduction from the Hamilton-Pontryagin viewpoint.
- Let $A: TQ \to \mathfrak{g}$ be a \mathfrak{g} -valued 1-form on the principal bundle $\pi: Q \to Q/G$.

- We will approach Lagrangian reduction from the Hamilton-Pontryagin viewpoint.
- Let $A: TQ \to \mathfrak{g}$ be a \mathfrak{g} -valued 1-form on the principal bundle $\pi: Q \to Q/G$.
- Denote by $\tilde{\mathfrak{g}}$ the vector bundle $(Q \times \mathfrak{g})/G \to (Q/G)$, with fibers isomorphic to \mathfrak{g} . Here G acts on \mathfrak{g} via the Ad-action.

- We will approach Lagrangian reduction from the Hamilton-Pontryagin viewpoint.
- Let $A: TQ \to \mathfrak{g}$ be a \mathfrak{g} -valued 1-form on the principal bundle $\pi: Q \to Q/G$.
- Denote by $\tilde{\mathfrak{g}}$ the vector bundle $(Q \times \mathfrak{g})/G \to (Q/G)$, with fibers isomorphic to \mathfrak{g} . Here G acts on \mathfrak{g} via the Ad-action.
- The bundle $(TQ \oplus T^*Q)/G$ decomposes into two parts: a reduced "Euler-Lagrange" part $(T(Q/G) \oplus T^*(Q/G))$ and a "Poincaré" part $(\tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*)$ (Yoshimura and Marsden, '09).

- We will approach Lagrangian reduction from the Hamilton-Pontryagin viewpoint.
- Let $A: TQ \to \mathfrak{g}$ be a \mathfrak{g} -valued 1-form on the principal bundle $\pi: Q \to Q/G$.
- Denote by $\tilde{\mathfrak{g}}$ the vector bundle $(Q \times \mathfrak{g})/G \to (Q/G)$, with fibers isomorphic to \mathfrak{g} . Here G acts on \mathfrak{g} via the Ad-action.
- The bundle $(TQ \oplus T^*Q)/G$ decomposes into two parts: a reduced "Euler-Lagrange" part $(T(Q/G) \oplus T^*(Q/G))$ and a "Poincaré" part $(\tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*)$ (Yoshimura and Marsden, '09).
- The curvature B=dA, which is a g-valued 2-form, reduces to a $\tilde{\mathfrak{g}}$ -valued 2-form \tilde{B} on Q/G. This gives rise to an external force in the reduced Euler-Lagrange equations.

The following are equivalent:

- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) is a critical point of the unreduced H-P action functional for variations satisfying $\delta q(t) = 0$ at t = 0, T.
- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) satisfies the implicit Euler-Lagrange equations.

The following are equivalent:

- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) is a critical point of the unreduced H-P action functional for variations satisfying $\delta q(t) = 0$ at t = 0, T.
- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) satisfies the implicit Euler-Lagrange equations.
- Let $\ell: T(Q/G) \oplus \tilde{\mathfrak{g}} \to \mathbb{R}$ be the reduced Lagrangian. The reduced curve $[q(t),v(t),p(t)]_G \cong (x(t),u(t),y(t),\bar{\eta}(t),\bar{\mu}(t))$ in $T(Q/G) \oplus T^*(Q/G) \oplus \tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*$ is a critical point of the reduced action functional

$$\mathcal{A}^{red} = \int_0^T (\ell(x(t), u(t), \bar{\eta}(t)) + \langle y(t), \dot{x}(t) - u(t) \rangle + \langle \bar{\mu}(t), \bar{\xi}(t) - \bar{\eta}(t)) dt$$

The following are equivalent:

- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) is a critical point of the unreduced H-P action functional for variations satisfying $\delta q(t) = 0$ at t = 0, T.
- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) satisfies the implicit Euler-Lagrange equations.
- Let $\ell: T(Q/G) \oplus \tilde{\mathfrak{g}} \to \mathbb{R}$ be the reduced Lagrangian. The reduced curve $[q(t),v(t),p(t)]_G \cong (x(t),u(t),y(t),\bar{\eta}(t),\bar{\mu}(t))$ in $T(Q/G) \oplus T^*(Q/G) \oplus \tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*$ is a critical point of the reduced action functional

$$\mathcal{A}^{red} = \int_0^T (\ell(x(t), u(t), \bar{\eta}(t)) + \langle y(t), \dot{x}(t) - u(t) \rangle + \langle \bar{\mu}(t), \bar{\xi}(t) - \bar{\eta}(t)) dt$$

for arbitrary variations $\delta u(t)$, $\delta y(t)$, $\delta \bar{\eta}(t)$ and $\delta \bar{\mu}(t)$ and for constrained variations of the form $\delta x(t) \oplus \delta^A \bar{\xi}(t)$, where

$$\delta^A ar{\xi}(t) = rac{Dar{\zeta}(t)}{Dt} + [ar{\xi}(t), ar{\zeta}(t)] + ilde{B}(\delta x(t), \dot{x}(t))$$

and $\delta x(t)$ vanishes at $t=0,\,T.$ Here $\bar{\zeta}(t)$ is an arbitrary curve in $\tilde{\mathfrak{g}}$ that vanishes at $t=0,\,T.$

The following are equivalent:

- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) is a critical point of the unreduced H-P action functional for variations satisfying $\delta q(t) = 0$ at t = 0, T.
- The $TQ \bigoplus T^*Q$ -valued curve (q(t), v(t), p(t)) satisfies the implicit Euler-Lagrange equations.
- Let $\ell: T(Q/G) \oplus \tilde{\mathfrak{g}} \to \mathbb{R}$ be the reduced Lagrangian. The reduced curve $[q(t),v(t),p(t)]_G \cong (x(t),u(t),y(t),\bar{\eta}(t),\bar{\mu}(t))$ in $T(Q/G) \oplus T^*(Q/G) \oplus \tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*$ is a critical point of the reduced action functional

$$\mathcal{A}^{red} = \int_0^T (\ell(x(t), u(t), \bar{\eta}(t)) + \langle y(t), \dot{x}(t) - u(t) \rangle + \langle \bar{\mu}(t), \bar{\xi}(t) - \bar{\eta}(t)) dt$$

for arbitrary variations $\delta u(t)$, $\delta y(t)$, $\delta \bar{\eta}(t)$ and $\delta \bar{\mu}(t)$ and for constrained variations of the form $\delta x(t) \oplus \delta^A \bar{\xi}(t)$, where

$$\delta^A \bar{\xi}(t) = \frac{D\bar{\zeta}(t)}{Dt} + [\bar{\xi}(t), \bar{\zeta}(t)] + \tilde{B}(\delta x(t), \dot{x}(t))$$

and $\delta x(t)$ vanishes at $t=0,\,T.$ Here $\bar{\zeta}(t)$ is an arbitrary curve in $\tilde{\mathfrak{g}}$ that vanishes at $t=0,\,T.$

• The reduced curve $(x(t), u(t), \bar{\eta}(t), y(t), \bar{\mu}(t))$ satisfies the following equations:

Horizontal Lagrange-Poincaré Equations
$$\frac{Dy}{Dt} = \frac{\partial \ell}{\partial x} - \langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \rangle, \quad y = \frac{\partial \ell}{\partial u}, \quad \dot{x} = u$$

Vertical Lagrange-Poincaré Reduction

$$rac{D}{Dt}ar{\mu}=\mathsf{ad}_{ar{\xi}}^*ar{\mu},\ \ ar{\mu}=rac{\partial\ell}{\partialar{\eta}},\ \ ar{\xi}=ar{\eta}$$

Outline

- 1 Deterministic Lagrange-Poincaré Reduction
- Stochastic Hamilton-Pontryagin Principle
- 3 Stochastic Lagrange-Poincaré Reduction
- A Stochastic Modification of the Kaluza-Klein Approach to Charged Particles

Stochastic Hamilton-Pontryagin Principle

 The Hamilton-Pontryagin approach to studying mechanical systems perturbed by random noise was introduced by Bou-Rabee and Owhadi (2008) and studied recenly by Street and Takao (2023).

Stochastic Hamilton-Pontryagin Principle

- The Hamilton-Pontryagin approach to studying mechanical systems perturbed by random noise was introduced by Bou-Rabee and Owhadi (2008) and studied recenly by Street and Takao (2023).
- Give a Lagrangian $L \in C^{\infty}(TQ)$, "noise Lagrangians" $\Gamma_i \in C^{\infty}(Q)$ $(i=1,\cdots,k)$ and "noise vector fields" $V_i \in \mathfrak{X}(Q)$, we consider the action functional on $TQ \oplus T^*Q$, given in coordinates (q,v,p) by

$$egin{aligned} \mathcal{S}(q_t, v_t, p_t) := \int_0^T L(q_t, v_t) dt + \sum_{i=1}^k \Gamma_i(q_t) \circ dB_t^i \ + \left\langle p_t, \circ dq_t - v_t dt - \sum_{i=1}^k V_i(q) \circ dB_t^i
ight
angle, \end{aligned}$$

where B_t^i is a Brownian motion. We will also assume that Q is endowed with a Riemannian metric and its associated Levi-Civita connection.

Definition

- $\Gamma_{t,\epsilon}$ is a semimartingale
- $\Gamma_{t,0} = \Gamma_t$

Definition

- \bullet $\Gamma_{t,\epsilon}$ is a semimartingale
- \bullet $\Gamma_{t,0} = \Gamma_t$
- $\epsilon \mapsto \Gamma_{t,\epsilon}$ is pathwise smooth and $\frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} \Gamma_{t,\epsilon}$ (the limit in the derivative is taken in the ucp sense) is a semimartingale, denoted by $\delta \Gamma_t$.

Definition

- $\Gamma_{t,\epsilon}$ is a semimartingale
- \bullet $\Gamma_{t,0} = \Gamma_t$
- $\epsilon \mapsto \Gamma_{t,\epsilon}$ is pathwise smooth and $\frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0}\Gamma_{t,\epsilon}$ (the limit in the derivative is taken in the ucp sense) is a semimartingale, denoted by $\delta\Gamma_t$.
- Existence:- Suppose M is geodesically complete. Arnaudon and Thalmaier (1998) show that given a semimartingale Y_t in TM over Γ_t , one can construct a variational family $\Gamma_{t,\epsilon}$ with $\delta\Gamma_t=Y_t$.

Definition

- $\Gamma_{t,\epsilon}$ is a semimartingale
- \bullet $\Gamma_{t,0} = \Gamma_t$
- $\epsilon \mapsto \Gamma_{t,\epsilon}$ is pathwise smooth and $\frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} \Gamma_{t,\epsilon}$ (the limit in the derivative is taken in the ucp sense) is a semimartingale, denoted by $\delta \Gamma_t$.
- Existence:- Suppose M is geodesically complete. Arnaudon and Thalmaier (1998) show that given a semimartingale Y_t in TM over Γ_t , one can construct a variational family $\Gamma_{t,\epsilon}$ with $\delta\Gamma_t=Y_t$.
- Fixed Endpoint Variations:- Assume that $\Gamma_0 = a$ for some $a \in M$. Let $\prod_{0 \to t}^{\Gamma_t} (\cdot)$ denote the stochastic parallel transport along the process Γ_t .

Definition

- $\Gamma_{t,\epsilon}$ is a semimartingale
- \bullet $\Gamma_{t,0} = \Gamma_t$
- $\epsilon \mapsto \Gamma_{t,\epsilon}$ is pathwise smooth and $\frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} \Gamma_{t,\epsilon}$ (the limit in the derivative is taken in the ucp sense) is a semimartingale, denoted by $\delta \Gamma_t$.
- Existence:- Suppose M is geodesically complete. Arnaudon and Thalmaier (1998) show that given a semimartingale Y_t in TM over Γ_t , one can construct a variational family $\Gamma_{t,\epsilon}$ with $\delta\Gamma_t=Y_t$.
- Fixed Endpoint Variations:- Assume that $\Gamma_0=a$ for some $a\in M$. Let $\prod_{0\to t}^{\Gamma_t}(\cdot)$ denote the stochastic parallel transport along the process Γ_t . If we want the variations to satisfy $\delta\Gamma_0=\delta\Gamma_T=0$, we set $Y_t=\prod_{0\to t}^{\Gamma_t}(v(t))$, where v(t) is a curve in T_aM with v(0)=v(T)=0. Then, we can construct $\Gamma_{t,\epsilon}$ from Y_t , such that $\delta\Gamma_t=Y_t$. A similar approach has been used in Arnaudon, Chen and Cruzeiro (2014) in the Lie groups context and in Huang and Zambrini (2023) for compact manifolds.

The Stochastic Euler-Lagrange Equations

• Using variations as described, it can be shown that (q_t, v_t, p_t) is a critical point of S if and only if it satisfies the **stochastic Euler-Lagrange equations**

$$\circ dp_t = \frac{\partial L}{\partial q_t} dt + \sum_{i=1}^k \left(\frac{\partial \Gamma_i}{\partial q_t} - \frac{\partial}{\partial q_t} \langle p_t, V_i \rangle \right) \circ dB_t^i$$

$$p_t = \frac{\partial L}{\partial v_t}$$

$$\circ dq_t = v_t dt + \sum_{i=1}^k V_i(q_t) \circ dB_t^i.$$

Outline

- 1 Deterministic Lagrange-Poincaré Reduction
- Stochastic Hamilton-Pontryagin Principle
- 3 Stochastic Lagrange-Poincaré Reduction
- A Stochastic Modification of the Kaluza-Klein Approach to Charged Particles

A Symmetry Condition on Noise Vector Fields

• We assume that the noise vector fields V_i satisfy the following condition: Let $Pr: TQ \to TQ/G$ denote the projection. There exists vector fields Θ_i on Q/G and constants $\beta_i \in \mathfrak{g}$ such that if θ_i denotes the section $[q] \mapsto [q, \beta_i]_G = \bar{\beta}_i$ of $\tilde{\mathfrak{g}}$ then $Pr \circ V_i \cong (\Theta_i \oplus \theta_i) \circ \pi$.

A Symmetry Condition on Noise Vector Fields

- We assume that the noise vector fields V_i satisfy the following condition: Let $Pr: TQ \to TQ/G$ denote the projection. There exists vector fields Θ_i on Q/G and constants $\beta_i \in \mathfrak{g}$ such that if θ_i denotes the section $[q] \mapsto [q, \beta_i]_G = \bar{\beta}_i$ of $\tilde{\mathfrak{g}}$ then $Pr \circ V_i \cong (\Theta_i \oplus \theta_i) \circ \pi$.
- Suppose $L: TQ \to \mathbb{R}$ is a G-invariant Lagrangian and for $i=1,\cdots,k$, consider G-invariant smooth functions $\Gamma_i \in C^\infty(Q)$ as noise Lagrangians.

A Symmetry Condition on Noise Vector Fields

- We assume that the noise vector fields V_i satisfy the following condition: Let $Pr: TQ \to TQ/G$ denote the projection. There exists vector fields Θ_i on Q/G and constants $\beta_i \in \mathfrak{g}$ such that if θ_i denotes the section $[q] \mapsto [q,\beta_i]_G = \bar{\beta}_i$ of $\tilde{\mathfrak{g}}$ then $Pr \circ V_i \cong (\Theta_i \oplus \theta_i) \circ \pi$.
- Suppose $L: TQ \to \mathbb{R}$ is a G-invariant Lagrangian and for $i=1,\cdots,k$, consider G-invariant smooth functions $\Gamma_i \in C^\infty(Q)$ as noise Lagrangians.
- Let $\ell: T(Q/G) \oplus \tilde{\mathfrak{g}} \to \mathbb{R}$ and $\gamma_i: Q/G \to \mathbb{R}$ denote the reduced Lagrangian and noise Lagrangians respectively.

The following statements are equivalent:

- The $TQ \oplus T^*Q$ -valued semimartingale (q_t, v_t, p_t) is a critical point for the action functional S for variations such that δv_t and δp_t are arbitrary and $\delta q_t = 0$ at t = 0, T.
- The semimartingale (q_t, v_t, p_t) satisfies the stochastic Euler-Lagrange equations.

The following statements are equivalent:

- The $TQ \oplus T^*Q$ -valued semimartingale (q_t, v_t, p_t) is a critical point for the action functional S for variations such that δv_t and δp_t are arbitrary and $\delta q_t = 0$ at t = 0, T.
- The semimartingale (q_t, v_t, p_t) satisfies the stochastic Euler-Lagrange equations.
- The semimartingale $[q_t, v_t, p_t]_G = (x_t, u_t, y_t, \bar{\eta}_t, \bar{\mu}_t)$ extremizes the reduced action functional \mathcal{S}^{red}

The following statements are equivalent:

- The $TQ \oplus T^*Q$ -valued semimartingale (q_t, v_t, p_t) is a critical point for the action functional S for variations such that δv_t and δp_t are arbitrary and $\delta q_t = 0$ at t = 0, T.
- lacktriangle The semimartingale (q_t, v_t, p_t) satisfies the stochastic Euler-Lagrange equations.
- The semimartingale $[q_t,v_t,p_t]_{\mathcal{G}}=(x_t,u_t,y_t,\bar{\eta}_t,\bar{\mu}_t)$ extremizes the reduced action functional \mathcal{S}^{red} for variations such that $\delta u_t,\ \delta y_t,\ \delta \bar{\eta}_t$ and $\delta \bar{\mu}_t$ are arbitrary and variations of the form $\delta x_t \oplus \delta^A \bar{\xi}_t$, where

$$\delta^{A}\bar{\xi}_{t} = \circ D\bar{\zeta}_{t} + [\circ d\bar{\xi}, \bar{\zeta}]_{t} + \tilde{B}(x_{t})(\delta x_{t}, \circ dx_{t})$$

and ζ_t and δx_t vanish at t = 0, T.

The following statements are equivalent:

- The $TQ \oplus T^*Q$ -valued semimartingale (q_t, v_t, p_t) is a critical point for the action functional S for variations such that δv_t and δp_t are arbitrary and $\delta q_t = 0$ at t = 0, T.
- The semimartingale (q_t, v_t, p_t) satisfies the stochastic Euler-Lagrange equations.
- The semimartingale $[q_t, v_t, p_t]_G = (x_t, u_t, y_t, \bar{\eta}_t, \bar{\mu}_t)$ extremizes the reduced action functional \mathcal{S}^{red} for variations such that δu_t , δy_t , $\delta \bar{\eta}_t$ and $\delta \bar{\mu}_t$ are arbitrary and variations of the form $\delta x_t \oplus \delta^A \bar{\xi}_t$, where

$$\delta^{A}\bar{\xi}_{t} = \circ D\bar{\zeta}_{t} + [\circ d\bar{\xi}, \bar{\zeta}]_{t} + \tilde{B}(x_{t})(\delta x_{t}, \circ dx_{t})$$

and $\bar{\zeta}_t$ and δx_t vanish at t = 0, T.

• The semimartingale $(x_t, u_t, y_t, \bar{\eta}_t, \bar{\mu}_t)$ satisfies the following equations:

Horizontal Stochastic Lagrange-Poincaré Equations

$$\circ Dy_{t} = \frac{\partial \ell}{\partial x_{t}} dt + \sum_{i=1}^{k} \left(\frac{\partial \gamma_{i}}{\partial x_{t}} - \frac{\partial}{\partial x_{t}} \langle y_{t}, \Theta_{i}(x_{t}) \rangle \right) \circ dB_{t}^{i} \\
- \langle \overline{\mu}_{t}, \widetilde{B}(\circ dx_{t}, \cdot) \rangle, \\
y_{t} = \frac{\partial \ell}{\partial u_{t}}, \\
\circ dx_{t} = u_{t} dt + \sum_{i=1}^{k} \Theta_{i}(x_{t}) \circ dB_{t}^{i}.$$

Vertical Stochastic Lagrange-Poincaré Reduction

$$egin{aligned} \circ Dar{\mu}_t &= \operatorname{\mathsf{ad}}_{\circ dar{\xi}_t}^*ar{\mu}_t \ &\circ dar{\xi}_t &= ar{\eta}_t dt + \sum_{i=1}^kar{eta}_i \circ dB_t^i \ &ar{\mu}_t &= rac{\partial \ell}{\partial ar{\eta}_t}. \end{aligned}$$

Special Cases

- Q = G: In this case, the horizontal stochastic Lagrange-Poincaré equations vanish and the vertical stochastic Lagrange-Poincaré equations are the stochastic Euler-Poincaré equations.
- G = {e}: In this case the vertical stochastic Lagrange-Poincaré equations vanish and the horizontal stochastic Lagrange-Poincaré equations become the stochastic Euler-Lagrange equations.

Special Cases

- Q = G: In this case, the horizontal stochastic Lagrange-Poincaré equations vanish and the vertical stochastic Lagrange-Poincaré equations are the stochastic Euler-Poincaré equations.
- G = {e}: In this case the vertical stochastic Lagrange-Poincaré equations vanish and the horizontal stochastic Lagrange-Poincaré equations become the stochastic Euler-Lagrange equations.
- The Horizontal Noise Case: Set $\bar{\beta}_i = 0$. Then, the vertical Lagrange-Poincaré equations are noise-free and agree with deterministic vertical Lagrange-Poincaré equations.

Special Cases

- Q = G: In this case, the horizontal stochastic Lagrange-Poincaré equations vanish and the vertical stochastic Lagrange-Poincaré equations are the stochastic Euler-Poincaré equations.
- G = {e}: In this case the vertical stochastic Lagrange-Poincaré equations vanish and the horizontal stochastic Lagrange-Poincaré equations become the stochastic Euler-Lagrange equations.
- The Horizontal Noise Case: Set $\bar{\beta}_i = 0$. Then, the vertical Lagrange-Poincaré equations are noise-free and agree with deterministic vertical Lagrange-Poincaré equations.
- The Vertical Noise Case: Set $\Gamma_i = 0$ and $\Theta_i = 0$. Then, the horizontal Lagrange-Poincaré equations become

$$\begin{split} \circ D y_t &= \frac{\partial \ell}{\partial x_t} dt - \langle \bar{\mu}_t, \tilde{B}(\dot{x}_t, \cdot) \rangle, \\ y_t &= \frac{\partial \ell}{\partial u_t}, \\ \dot{x}_t &= u_t \end{split}$$

which agree with the deterministic horizontal Lagrange-Poincaré equations up to a stochastic forcing term given by $\langle \bar{\mu}_t, \tilde{B}(\dot{x}_t, \cdot) \rangle$.

Outline

- 1 Deterministic Lagrange-Poincaré Reduction
- Stochastic Hamilton-Pontryagin Principle
- 3 Stochastic Lagrange-Poincaré Reduction
- 4 A Stochastic Modification of the Kaluza-Klein Approach to Charged Particles

• The equation for a charged particle in a magnetic field **B** is given by $\dot{\mathbf{v}} = \frac{e}{c}\mathbf{v} \times \mathbf{B}$. It can be viewed as a reduction of the geodesic flow on $Q_K = \mathbb{R}^3 \times S^1$ under a certain metric (Marsden and Ratiu, '98).

- The equation for a charged particle in a magnetic field **B** is given by $\dot{\mathbf{v}} = \frac{e}{c}\mathbf{v} \times \mathbf{B}$. It can be viewed as a reduction of the geodesic flow on $Q_K = \mathbb{R}^3 \times S^1$ under a certain metric (Marsden and Ratiu, '98).
- Let $G = S^1$ with its standard bi-invariant metric κ and consider \mathbb{R}^3 with its standard metric given by the inner product \langle , \rangle .

- The equation for a charged particle in a magnetic field **B** is given by $\dot{\mathbf{v}} = \frac{e}{c}\mathbf{v} \times \mathbf{B}$. It can be viewed as a reduction of the geodesic flow on $Q_K = \mathbb{R}^3 \times S^1$ under a certain metric (Marsden and Ratiu, '98).
- Let $G = S^1$ with its standard bi-invariant metric κ and consider \mathbb{R}^3 with its standard metric given by the inner product \langle , \rangle .
- Let **A** be a vector in \mathbb{R}^3 and identify **A** with a 1-form A on \mathbb{R}^3 . Let

$$\alpha = A + d\theta$$

be a connection 1-form on the bundle $\pi:\mathbb{R}^3 \times S^1 \to \mathbb{R}^3$.

- The equation for a charged particle in a magnetic field **B** is given by $\dot{\mathbf{v}} = \frac{e}{c}\mathbf{v} \times \mathbf{B}$. It can be viewed as a reduction of the geodesic flow on $Q_K = \mathbb{R}^3 \times S^1$ under a certain metric (Marsden and Ratiu, '98).
- Let $G = S^1$ with its standard bi-invariant metric κ and consider \mathbb{R}^3 with its standard metric given by the inner product \langle , \rangle .
- Let **A** be a vector in \mathbb{R}^3 and identify **A** with a 1-form A on \mathbb{R}^3 . Let

$$\alpha = A + d\theta$$

be a connection 1-form on the bundle $\pi:\mathbb{R}^3 imes S^1 o\mathbb{R}^3.$

• Consider the metric on Q_K given by

$$g((\mathbf{u}_q, u_\theta), (\mathbf{v}_q, v_\theta)) = \langle \mathbf{u}_q, \mathbf{v}_q \rangle + \kappa(\alpha(\mathbf{u}_q, v_\theta), \alpha(\mathbf{v}_q, v_\theta)).$$

- The equation for a charged particle in a magnetic field **B** is given by $\dot{\mathbf{v}} = \frac{e}{c}\mathbf{v} \times \mathbf{B}$. It can be viewed as a reduction of the geodesic flow on $Q_K = \mathbb{R}^3 \times S^1$ under a certain metric (Marsden and Ratiu, '98).
- Let $G = S^1$ with its standard bi-invariant metric κ and consider \mathbb{R}^3 with its standard metric given by the inner product \langle , \rangle .
- Let **A** be a vector in \mathbb{R}^3 and identify **A** with a 1-form A on \mathbb{R}^3 . Let

$$\alpha = A + d\theta$$

be a connection 1-form on the bundle $\pi: \mathbb{R}^3 \times S^1 \to \mathbb{R}^3$.

• Consider the metric on Q_K given by

$$g((\mathbf{u}_q, u_\theta), (\mathbf{v}_q, v_\theta)) = \langle \mathbf{u}_q, \mathbf{v}_q \rangle + \kappa(\alpha(\mathbf{u}_q, v_\theta), \alpha(\mathbf{v}_q, v_\theta)).$$

• The Lagrangian for the geodesic flow on (Q_K, g) is given by

$$L(q, \theta, \mathbf{v}_q, \nu_{\theta}) = \frac{1}{2} \left(|\mathbf{v}_q|^2 + (\mathbf{A} \cdot \mathbf{v}_q + \nu_{\theta})^2 \right).$$

We will call it the Kaluza-Klein Lagrangian.

• Let $B = d\alpha = dA$ and identify B with the vector $\mathbf{B} = \nabla \times \mathbf{A}$. The reduced curvature 2-form on $Q_K/S^1 \cong \mathbb{R}^3$ is identified with B or \mathbf{B} .

- Let $B=d\alpha=dA$ and identify B with the vector $\mathbf{B}=\nabla\times\mathbf{A}$. The reduced curvature 2-form on $Q_K/S^1\cong\mathbb{R}^3$ is identified with B or \mathbf{B} .
- Let $(\mathbf{x},\mathbf{u},\lambda)\in\mathbb{R}^3\times\mathbb{R}^3\times\mathbb{R}$ denote local coordinates on the bundle $T\mathbb{R}^3\oplus\tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ is the associated bundle. The reduced Lagrangian is

$$\ell(\mathbf{x}, \mathbf{u}, \lambda) = \frac{1}{2} (|\mathbf{u}|^2 + \lambda^2).$$

- Let $B = d\alpha = dA$ and identify B with the vector $\mathbf{B} = \nabla \times \mathbf{A}$. The reduced curvature 2-form on $Q_K/S^1 \cong \mathbb{R}^3$ is identified with B or \mathbf{B} .
- Let $(\mathbf{x}, \mathbf{u}, \lambda) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ denote local coordinates on the bundle $T\mathbb{R}^3 \oplus \tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ is the associated bundle. The reduced Lagrangian is

$$\ell(\mathbf{x}, \mathbf{u}, \lambda) = \frac{1}{2} \left(|\mathbf{u}|^2 + \lambda^2 \right).$$

The vertical Lagrange-Poincaré equations give

$$\dot{p}_{\theta}=0, p_{\theta}=\lambda.$$

Here p_{θ} is the momentum conjugate to λ and is given by

$$p_{\theta} = \mathbf{A} \cdot \mathbf{u} + \lambda.$$

 We interpret this as the charge conservation equation, that is, we may define the electric charge e, by setting

$$e = p_{\theta} c$$
.

- Let $B = d\alpha = dA$ and identify B with the vector $\mathbf{B} = \nabla \times \mathbf{A}$. The reduced curvature 2-form on $Q_K/S^1 \cong \mathbb{R}^3$ is identified with B or \mathbf{B} .
- Let $(\mathbf{x}, \mathbf{u}, \lambda) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ denote local coordinates on the bundle $T\mathbb{R}^3 \oplus \tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ is the associated bundle. The reduced Lagrangian is

$$\ell(\mathbf{x}, \mathbf{u}, \lambda) = \frac{1}{2} \left(|\mathbf{u}|^2 + \lambda^2 \right).$$

The vertical Lagrange-Poincaré equations give

$$\dot{p}_{\theta}=0, p_{\theta}=\lambda.$$

Here $p_{ heta}$ is the momentum conjugate to λ and is given by

$$p_{\theta} = \mathbf{A} \cdot \mathbf{u} + \lambda.$$

 We interpret this as the charge conservation equation, that is, we may define the electric charge e, by setting

$$e = p_{\theta} c$$
.

The horizontal Lagrange-Poincaré equations become

$$\dot{\mathbf{u}}_q = \frac{e}{c}(\mathbf{u} \times \mathbf{B}),$$

which is the Lorentz force law.

The Stochastic Version

ullet Let L denote the Kaluza-Klein Lagrangian. Let $\Gamma\in \mathcal{C}^\infty(Q_{\mathcal{K}})$ and

$$V(\mathbf{q}, \theta) = (\mathbf{V}(\mathbf{q}), \Psi(\theta)) \in T_{(\mathbf{q}, \theta)}Q_K$$

be a noise vector field symmetric under the S^1 action. The noise is assumed to be a Brownian motion denoted by W_t .

• Since V is assumed to symmetric under the S^1 action, Ψ is a constant.

The Stochastic Version

ullet Let L denote the Kaluza-Klein Lagrangian. Let $\Gamma\in \mathcal{C}^\infty(Q_{\mathcal{K}})$ and

$$V(\mathbf{q}, \theta) = (\mathbf{V}(\mathbf{q}), \Psi(\theta)) \in T_{(\mathbf{q}, \theta)}Q_K$$

be a noise vector field symmetric under the S^1 action. The noise is assumed to be a Brownian motion denoted by W_t .

- Since V is assumed to symmetric under the S^1 action, Ψ is a constant.
- The vertical stochastic Lagrange-Poincaré equations remains the same, namely $\dot{p}_{\theta}=0$. So we obtain our charge conservation equation $e=p_{\theta}c$.

The Stochastic Version

ullet Let L denote the Kaluza-Klein Lagrangian. Let $\Gamma\in \mathcal{C}^\infty(Q_{\mathcal{K}})$ and

$$V(\mathbf{q}, \theta) = (\mathbf{V}(\mathbf{q}), \Psi(\theta)) \in T_{(\mathbf{q}, \theta)}Q_K$$

be a noise vector field symmetric under the S^1 action. The noise is assumed to be a Brownian motion denoted by W_t .

- Since V is assumed to symmetric under the S^1 action, Ψ is a constant.
- The vertical stochastic Lagrange-Poincaré equations remains the same, namely $\dot{p}_{\theta}=0$. So we obtain our charge conservation equation $e=p_{\theta}c$.
- The horizontal Lagrange-Poincaré equations become

$$\circ d\mathbf{u}_t = \frac{e}{c}(\mathbf{u}_t \times \mathbf{B})dt + \left(\frac{\partial \gamma}{\partial \mathbf{x}_t} - \frac{\partial}{\partial \mathbf{x}_t}(\mathbf{u}_t \cdot \mathbf{V}(\mathbf{x}_t)) - \frac{e}{c}(\mathbf{V}(\mathbf{x}_t) \times \mathbf{B})\right) \circ dW_t.$$

Main References

Semimartingale driven mechanics and reduction by symmetry for stochastic and dissipative dynamical systems, 2023.

Hernán Cendra, Jerrold E Marsden, and Tudor S Ratiu. Lagrangian reduction by stages.

Memoirs of the American Mathematical Society, 126(601):1–130, 1997.

- Hiroaki Yoshimura and Jerrold E. Marsden.
 Dirac cotangent bundle reduction.

 Journal of Geometric Mechanics, 1(1):87–158, 2009.
 - Marc Arnaudon and Anton Thalmaier. Stability of stochastic differential equations in manifolds. In *Séminaire de Probabilités XXXII*, pages 188–214, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

Thank You