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Lagrangians on Lie Groups: Euler-Poincaré Reduction

Let G be a Lie group and L ∈ C∞(TG) be a G -invariant Lagrangian under the tangent lifted
left action of G on TG . Given a curve g(t) in G , set ξ(t) = g(t)−1ġ(t). The following are
equivalent:

The variational principle δ
∫ T
0 L(g(t), ġ(t))dt = 0 holds for variations with fixed endpoints.

g(t) satisfies the Euler-Lagrange equations

d

dt

(
∂L

∂ġ

)
=

∂L

∂g
.

Let ℓ denote the restriction of L to g. The curve ξ(t) in g satisfies the variational principle

δ
∫ T
0 ℓ(ξ(t))dt = 0

for variations of the form

δξ = η̇ + [ξ, η],

where η is an arbitrary curve in g vanishing at the endpoints.

The Euler-Poincaré equations
d

dt

(
δℓ

δξ

)
= ad∗ξ

δℓ

δξ

are satisfied by ξ(t).
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Generalization to Arbitrary Configuration Manifolds:
Lagrange-Poincaré Reduction

Let G be a Lie group acting freely and properly on a manifold Q (on
the left) and via tangent lifts on TQ and L be a G -invariant
Lagrangian on TQ.

We want to reduce the action principle and its associated
Euler-Lagrange equations to the dimensionally smaller space TQ/G .

Given a choice of a principal connection on the bundle Q → Q/G ,
Cendra, Marsden and Ratiu (2001), showed that

TQ/G T (Q/G )⊕ (Q × g)/G

Q/G

∼=
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The Hamilton-Pontryagin Principle (Yoshimura-Marsden,
’06)

An equivalent formulation of Euler-Lagrange equations is through the
Hamilton-Pontryagin (H-P) principle. This is useful for dealing with mechanical
systems perturbed by stochastic noise.

We look for critical points of the action functional

A(q(t), v(t), p(t)) =

∫ T

0

(L(q(t), v(t)) + ⟨p(t), q̇(t)− v(t)⟩)dt

over curves (q(t), v(t), p(t)) in the Pontryagin bundle TQ ⊕ T ∗Q with
q(0) = a ∈ Q and q(T ) = b ∈ Q.

This is equivalent to solving the implicit Euler-Lagrange equations:

q̇ = v

p =
∂L

∂v
(This is the Legendre transform)

ṗ =
∂L

∂q
.

The H-P principle is used for developing variational principles for systems with
Dirac constraints.
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Lagrange-Poincaré Reduction: Geometry

We will approach Lagrangian reduction from the Hamilton-Pontryagin
viewpoint.

Let A : TQ → g be a g-valued 1-form on the principal bundle
π : Q → Q/G .

Denote by g̃ the vector bundle (Q × g)/G → (Q/G ), with fibers
isomorphic to g. Here G acts on g via the Ad-action.

The bundle (TQ ⊕ T ∗Q)/G decomposes into two parts: a reduced
“Euler-Lagrange” part (T (Q/G )⊕ T ∗(Q/G )) and a “Poincaré” part
(g̃

⊕
g̃∗) (Yoshimura and Marsden, ’09).

The curvature B = dA, which is a g-valued 2-form, reduces to a
g̃-valued 2-form B̃ on Q/G . This gives rise to an external force in the
reduced Euler-Lagrange equations.
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Lagrange-Poincaré Reduction Theorem, Yoshimura and
Marsden, ’09

The following are equivalent:

The TQ
⊕

T∗Q-valued curve (q(t), v(t), p(t)) is a critical point of the unreduced H − P
action functional for variations satisfying δq(t) = 0 at t = 0,T .
The TQ

⊕
T∗Q-valued curve (q(t), v(t), p(t)) satisfies the implicit Euler-Lagrange

equations.

Let ℓ : T (Q/G)⊕ g̃ → R be the reduced Lagrangian. The reduced curve
[q(t), v(t), p(t)]G ∼= (x(t), u(t), y(t), η̄(t), µ̄(t)) in T (Q/G)⊕ T∗(Q/G)⊕ g̃⊕ g̃∗ is a
critical point of the reduced action functional

Ared =

∫ T

0
(ℓ(x(t), u(t), η̄(t)) + ⟨y(t), ẋ(t)− u(t)⟩+ ⟨µ̄(t), ξ̄(t)− η̄(t))dt

for arbitrary variations δu(t), δy(t), δη̄(t) and δµ̄(t) and for constrained variations of the
form δx(t)⊕ δAξ̄(t), where

δAξ̄(t) =
D ζ̄(t)

Dt
+ [ξ̄(t), ζ̄(t)] + B̃(δx(t), ẋ(t))

and δx(t) vanishes at t = 0,T . Here ζ̄(t) is an arbitrary curve in g̃ that vanishes at
t = 0,T .
The reduced curve (x(t), u(t), η̄(t), y(t), µ̄(t)) satisfies the following equations:

Horizontal Lagrange-Poincaré Equations
Dy

Dt
=

∂ℓ

∂x
− ⟨µ̄, B̃(ẋ , ·)⟩, y =

∂ℓ

∂u
, ẋ = u

Vertical Lagrange-Poincaré Reduction
D

Dt
µ̄ = ad∗

ξ̄
µ̄, µ̄ =

∂ℓ

∂η̄
, ξ̄ = η̄
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Stochastic Hamilton-Pontryagin Principle

The Hamilton-Pontryagin approach to studying mechanical systems
perturbed by random noise was introduced by Bou-Rabee and Owhadi
(2008) and studied recenly by Street and Takao (2023).

Give a Lagrangian L ∈ C∞(TQ), “noise Lagrangians” Γi ∈ C∞(Q)
(i = 1, · · · , k) and “noise vector fields” Vi ∈ X(Q), we consider the action
functional on TQ ⊕ T ∗Q, given in coordinates (q, v , p) by

S(qt , vt , pt) :=
∫ T

0

L(qt , vt)dt +
k∑

i=1

Γi (qt) ◦ dB i
t

+

〈
pt , ◦dqt − vtdt −

k∑
i=1

Vi (q) ◦ dB i
t

〉
,

where B i
t is a Brownian motion. We will also assume that Q is endowed

with a Riemannian metric and its associated Levi-Civita connection.
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with a Riemannian metric and its associated Levi-Civita connection.

Archishman Saha (University of Ottawa) Stochastic Lagrange-Poincaré Reduction September 9, 2024 10 / 22



Variations of a Semimartingale

Definition
For a semimartingale Γt in a Riemannian manifold M with its associated Levi-Civita connection,

we consider variations of the form ϵ 7→ Γt,ϵ, where ϵ ∈ (−s, s) for some s > 0, such that:
Γt,ϵ is a semimartingale

Γt,0 = Γt

ϵ 7→ Γt,ϵ is pathwise smooth and ∂
∂ϵ

∣∣∣
ϵ=0

Γt,ϵ (the limit in the derivative is taken in the ucp

sense) is a semimartingale, denoted by δΓt .

Existence:- Suppose M is geodesically complete. Arnaudon and Thalmaier (1998) show
that given a semimartingale Yt in TM over Γt , one can construct a variational family Γt,ϵ
with δΓt = Yt .

Fixed Endpoint Variations:- Assume that Γ0 = a for some a ∈ M. Let
∥∥Γt
0→t

(·) denote
the stochastic parallel transport along the process Γt .

If we want the variations to satisfy

δΓ0 = δΓT = 0, we set Yt =
∥∥Γt
0→t

(v(t)), where v(t) is a curve in TaM with
v(0) = v(T ) = 0. Then, we can construct Γt,ϵ from Yt , such that δΓt = Yt . A similar
approach has been used in Arnaudon, Chen and Cruzeiro (2014) in the Lie groups context
and in Huang and Zambrini (2023) for compact manifolds.
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The Stochastic Euler-Lagrange Equations

Using variations as described, it can be shown that (qt , vt , pt) is a critical point of
S if and only if it satisfies the stochastic Euler-Lagrange equations

◦dpt =
∂L

∂qt
dt +

k∑
i=1

(
∂Γi

∂qt
− ∂

∂qt
⟨pt ,Vi ⟩

)
◦ dB i

t

pt =
∂L

∂vt

◦dqt = vtdt +
k∑

i=1

Vi (qt) ◦ dB i
t .
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A Symmetry Condition on Noise Vector Fields

We assume that the noise vector fields Vi satisfy the following
condition: Let Pr : TQ → TQ/G denote the projection. There exists
vector fields Θi on Q/G and constants βi ∈ g such that if θi denotes
the section [q] 7→ [q, βi ]G = β̄i of g̃ then Pr ◦ Vi

∼= (Θi ⊕ θi ) ◦ π.

Suppose L : TQ → R is a G -invariant Lagrangian and for
i = 1, · · · , k , consider G -invariant smooth functions Γi ∈ C∞(Q) as
noise Lagrangians.

Let ℓ : T (Q/G )⊕ g̃ → R and γi : Q/G → R denote the reduced
Lagrangian and noise Lagrangians respectively.
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Stochastic Lagrange-Poincaré Reduction Theorem, S., ’24

The following statements are equivalent:

The TQ ⊕ T∗Q-valued semimartingale (qt , vt , pt) is a critical point for the action
functional S for variations such that δvt and δpt are arbitrary and δqt = 0 at t = 0,T .

The semimartingale (qt , vt , pt) satisfies the stochastic Euler-Lagrange equations.

The semimartingale [qt , vt , pt ]G = (xt , ut , yt , η̄t , µ̄t) extremizes the reduced action
functional Sred

for variations such that δut , δyt , δη̄t and δµ̄t are arbitrary and variations
of the form δxt ⊕ δAξ̄t , where

δAξ̄t = ◦D ζ̄t + [◦d ξ̄, ζ̄]t + B̃(xt)(δxt , ◦dxt)
and ζ̄t and δxt vanish at t = 0,T .

The semimartingale (xt , ut , yt , η̄t , µ̄t) satisfies the following equations:

Horizontal Stochastic Lagrange-Poincaré
Equations

◦Dyt =
∂ℓ

∂xt
dt +

k∑
i=1

(
∂γi

∂xt
−

∂

∂xt
⟨yt ,Θi (xt)⟩

)
◦ dB i

t

− ⟨µ̄t , B̃(◦dxt , ·)⟩,

yt =
∂ℓ

∂ut
,

◦dxt = utdt +
k∑

i=1

Θi (xt) ◦ dB i
t .

Vertical Stochastic Lagrange-Poincaré
Reduction

◦Dµ̄t = ad∗◦d ξ̄t
µ̄t

◦d ξ̄t = η̄tdt +
k∑

i=1

β̄i ◦ dB i
t

µ̄t =
∂ℓ

∂η̄t
.
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Special Cases

Q = G : In this case, the horizontal stochastic Lagrange-Poincaré equations vanish and
the vertical stochastic Lagrange-Poincaré equations are the stochastic Euler-Poincaré
equations.

G = {e}: In this case the vertical stochastic Lagrange-Poincaré equations vanish and the
horizontal stochastic Lagrange-Poincaré equations become the stochastic Euler-Lagrange
equations.

The Horizontal Noise Case: Set β̄i = 0. Then, the vertical Lagrange-Poincaré equations
are noise-free and agree with deterministic vertical Lagrange-Poincaré equations.

The Vertical Noise Case: Set Γi = 0 and Θi = 0. Then, the horizontal Lagrange-Poincaré
equations become

◦Dyt =
∂ℓ

∂xt
dt − ⟨µ̄t , B̃(ẋt , ·)⟩,

yt =
∂ℓ

∂ut
,

ẋt = ut

which agree with the deterministic horizontal Lagrange-Poincaré equations up to a
stochastic forcing term given by ⟨µ̄t , B̃(ẋt , ·)⟩.
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The Deterministic Kaluza-Klein Approach to Charged
Particles

The equation for a charged particle in a magnetic field B is given by v̇ = e
c
v × B.

It can be viewed as a reduction of the geodesic flow on QK = R3 × S1 under a
certain metric (Marsden and Ratiu, ’98).

Let G = S1 with its standard bi-invariant metric κ and consider R3 with its
standard metric given by the inner product ⟨, ⟩.
Let A be a vector in R3 and identify A with a 1-form A on R3. Let

α = A+ dθ

be a connection 1-form on the bundle π : R3 × S1 → R3.

Consider the metric on QK given by

g((uq, uθ), (vq, vθ)) = ⟨uq, vq⟩+ κ(α(uq, vθ), α(vq, vθ)).

The Lagrangian for the geodesic flow on (QK , g) is given by

L(q, θ, vq, vθ) =
1

2

(
|vq|2 + (A · vq + vθ)

2
)
.

We will call it the Kaluza-Klein Lagrangian.
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Let G = S1 with its standard bi-invariant metric κ and consider R3 with its
standard metric given by the inner product ⟨, ⟩.
Let A be a vector in R3 and identify A with a 1-form A on R3. Let

α = A+ dθ

be a connection 1-form on the bundle π : R3 × S1 → R3.

Consider the metric on QK given by

g((uq, uθ), (vq, vθ)) = ⟨uq, vq⟩+ κ(α(uq, vθ), α(vq, vθ)).

The Lagrangian for the geodesic flow on (QK , g) is given by

L(q, θ, vq, vθ) =
1

2

(
|vq|2 + (A · vq + vθ)

2
)
.

We will call it the Kaluza-Klein Lagrangian.

Archishman Saha (University of Ottawa) Stochastic Lagrange-Poincaré Reduction September 9, 2024 18 / 22
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Reduction of the Kaluza-Klein Lagrangian

Let B = dα = dA and identify B with the vector B = ∇× A. The reduced curvature
2-form on QK/S

1 ∼= R3 is identified with B or B.

Let (x, u, λ) ∈ R3 × R3 × R denote local coordinates on the bundle TR3 ⊕ g̃, where g̃ is
the associated bundle. The reduced Lagrangian is

ℓ(x, u, λ) =
1

2

(
|u|2 + λ2

)
.

The vertical Lagrange-Poincaré equations give

ṗθ = 0, pθ = λ.

Here pθ is the momentum conjugate to λ and is given by

pθ = A · u+ λ.

We interpret this as the charge conservation equation, that is, we may define the electric
charge e, by setting

e = pθc.

The horizontal Lagrange-Poincaré equations become

u̇q =
e

c
(u× B),

which is the Lorentz force law.
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Reduction of the Kaluza-Klein Lagrangian

Let B = dα = dA and identify B with the vector B = ∇× A. The reduced curvature
2-form on QK/S

1 ∼= R3 is identified with B or B.

Let (x, u, λ) ∈ R3 × R3 × R denote local coordinates on the bundle TR3 ⊕ g̃, where g̃ is
the associated bundle. The reduced Lagrangian is

ℓ(x, u, λ) =
1

2

(
|u|2 + λ2

)
.

The vertical Lagrange-Poincaré equations give
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The Stochastic Version

Let L denote the Kaluza-Klein Lagrangian. Let Γ ∈ C∞(QK ) and

V (q, θ) = (V(q),Ψ(θ)) ∈ T(q,θ)QK

be a noise vector field symmetric under the S1 action. The noise is assumed
to be a Brownian motion denoted by Wt .

Since V is assumed to symmetric under the S1 action, Ψ is a constant.

The vertical stochastic Lagrange-Poincaré equations remains the same,
namely ṗθ = 0. So we obtain our charge conservation equation e = pθc .

The horizontal Lagrange-Poincaré equations become

◦dut =
e

c
(ut × B)dt +

(
∂γ

∂xt
− ∂

∂xt
(ut · V(xt))−

e

c
(V(xt)× B)

)
◦ dWt .
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The Stochastic Version

Let L denote the Kaluza-Klein Lagrangian. Let Γ ∈ C∞(QK ) and

V (q, θ) = (V(q),Ψ(θ)) ∈ T(q,θ)QK

be a noise vector field symmetric under the S1 action. The noise is assumed
to be a Brownian motion denoted by Wt .

Since V is assumed to symmetric under the S1 action, Ψ is a constant.

The vertical stochastic Lagrange-Poincaré equations remains the same,
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In Séminaire de Probabilités XXXII, pages 188–214, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

Archishman Saha (University of Ottawa) Stochastic Lagrange-Poincaré Reduction September 9, 2024 21 / 22



Thank You
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